Ionic memcapacitive effects in nanopores.

نویسندگان

  • Matt Krems
  • Yuriy V Pershin
  • Massimiliano Di Ventra
چکیده

Using molecular dynamics simulations, we show that, when subject to a periodic external electric field, a nanopore in ionic solution acts as a capacitor with memory (memcapacitor) at various frequencies and strengths of the electric field. Most importantly, the hysteresis loop of this memcapacitor shows both negative and diverging capacitance as a function of the voltage. The origin of this effect stems from the slow polarizability of the ionic solution due to the finite mobility of ions in water. We develop a microscopic quantitative model which captures the main features we observe in the simulations and suggest experimental tests of our predictions. We also suggest a possible memory mechanism due to the transport of ions through the nanopore itself, which may be observed at small frequencies. These effects may be important both in DNA sequencing proposals using nanopores and possibly in the dynamics of action potentials in neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short channel effects on electrokinetic energy conversion in solid-state nanopores

The ion selectivity of nanopores due to the wall surface charges is capable of inducing strong coupling between fluidic and ionic motion within the system. This interaction opens up the prospect of operating nanopores as nanoscale devices for electrokinetic energy conversion. However, the very short channel lengths make the ionic movement and fluidics inside the pore to be substantially affecte...

متن کامل

Large apparent electric size of solid-state nanopores due to spatially extended surface conduction.

Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based ...

متن کامل

Geometrical Effect in 2D Nanopores.

A long-standing problem in the application of solid-state nanopores is the lack of the precise control over the geometry of artificially formed pores compared to the well-defined geometry in their biological counterpart, that is, protein nanopores. To date, experimentally investigated solid-state nanopores have been shown to adopt an approximately circular shape. In this Letter, we investigate ...

متن کامل

Observation of ionic Coulomb blockade in nanopores.

Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport ...

متن کامل

Ion current rectification and rectification inversion in conical nanopores: a perm-selective view.

Ionic transport in charged conical nanopores is known to give rise to ion current rectification. The present study shows that the rectification direction can be inverted when using electrolyte solutions at very low ionic strengths. To elucidate these phenomena, electroneutral conical nanopores containing a perm-selective region at the tip have been investigated and shown to behave like classica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 10 7  شماره 

صفحات  -

تاریخ انتشار 2010